Spatial and temporal patterns of nitrogen concentrations in pristine and agriculturally-influenced prairie streams
نویسندگان
چکیده
Long-term data on nitrogen chemistry of streams draining Konza Prairie Biological Station (Konza), Kansas were analyzed to assess spatial and temporal patterns and examine the influence of agricultural activity on these patterns. Upland watersheds of Konza are predominantly tallgrass prairies, but agricultural fields and riparian forests border the lower reaches of the streams. We have up to 11 years of data in the relatively pristine upland reaches and 4 years of data on wells and downstream reaches influenced by fertilized croplands. Seasonal and spatial patterns in total nitrogen (TN) concentrations were driven largely by changes in the nitrate (NO3 ) concentrations. A gradient of increasing NO − 3 concentrations occurred from pristine upland stream reaches to the more agriculturally-influenced lowland reaches. Nitrate concentrations varied seasonally and were negatively correlated with discharge in areas influenced by row-crop agriculture (p = 0.007). The NO3 concentrations of stream water in lowland reaches were lowest during times of high precipitation, when the relative influence of groundwater drainage is minimal and water in the channel is primarily derived from upland prairie reaches. The groundwater from cropland increased stream NO3 concentrations about four-fold during low-discharge periods, even though significant riparian forest corridors existed along most of the lower stream channel. The minimum NO3 concentrations in the agriculturally influenced reaches were greater than at any time in prairie reaches. Analysis of data before and after introduction of bison to four prairie watersheds revealed a 35% increase of TN concentrations (p < 0.05) in the stream water channels after the introduction of bison. These data suggest that natural processes such as bison grazing, variable discharge, and localized input of groundwater lead to variation in NO3 concentrations less than 100-fold in prairie streams. Row-crop agriculture can increase NO3 concentrations well over 100-fold relative to pristine systems, and the influence of this land use process over space and time overrides natural processes.
منابع مشابه
Nutrient uptake in streams draining agricultural catchments of the midwestern United States
1. Agriculture is a major contributor of non-point source pollution to surface waters in the midwestern United States, resulting in eutrophication of freshwater aquatic ecosystems and development of hypoxia in the Gulf of Mexico. Agriculturally influenced streams are diverse in morphology and have variable nutrient concentrations. Understanding how nutrients are transformed and retained within ...
متن کاملLong-term spatial and temporal variability of ambient carbon monoxide in Urmia, Iran
One of the pillars of epidemiologic research on the long-term health effects of air pollution is to estimate the chronic exposures over space and time. In this study, we aimed to measure the intra-urban ambient carbon monoxide (CO) concentrations within Urmia city in Iran, and to build a model within the geographic information system (GIS) to estimate the annual and seasonal means anywhere with...
متن کاملEcosystem characteristics of remnant, headwater tallgrass prairie streams.
North America has lost >95% of its native tallgrass prairie due to land conversion, making prairie streams one of the most endangered ecosystems. Research on the basic ecosystem characteristics of the remaining natural prairie streams will inform conservation and management. We examined the structure and function of headwater streams draining tallgrass prairie tracts at Osage Prairie in Missour...
متن کاملModeling and Spatio-Temporal Analysis of the Distribution of O3 in Tehran City Based on Neural Network and Spatial Analysis in GIS Environment
Air pollution is one of the most problems that people are facing today in metropolitan areas. Suspended particulates, carbon monoxide, sulfur dioxide, ozone and nitrogen dioxide are the five major pollutants of air that pose many problems to human health. The goal of this study is to propose a spatial approach for estimation and analyzing the spatial and temporal distribution of ozone based on ...
متن کاملRegulation of nutrient uptake in eutrophic lowland streams
We studied nutrient uptake in relation to water chemistry, stream hydrodynamics, and ecosystem metabolism in two eutrophic lowland streams located near Berlin, Germany. Ambient nutrient uptake rates ranged from 0.180 to 12.880 g NO3-N m22 d21, from 0.035 to 0.517 g NH4-N m22 d21, and from 0.017 to 0.750 g PO4-P m22 d21. Temporal and spatial variability in nutrient uptake rates within single str...
متن کامل